Источник энергии группового переноса

0
341

В сокращенном названии АТФ буквой А обозначен аденозин. Это нуклеозид, который определяется как комбинация основания, в данном случае аденина с атомом 1 углерода рибозы — пятиуглеродного сахара, или пентозы. В подобных нуклеозидных комбинациях с рибозой участвуют три других важных основания: гуанин, который, как и аденин, относится к группе пуринов, цитозин и урацил — представители пиримидинов. Соответствующие нуклеозиды называются гуанозином (Г), цитидином (Ц) и уридином (У).
Не останавливаясь подробно на структуре оснований, сконцентрируем наше внимание на другом конце молекулы нуклеози — да, который занят атомом углерода в положении 5 рибозы (его принято обозначать 5′ в отличие от атома 5 основания). Этот углерод несет гидроксильную группу ОН, которая в наиболее естественных сочетаниях с нуклеозидом несет форфорильную группу. Такие нуклеозидмонофосфаты называются нуклеотидами; они обозначаются как адениловая, гуаниловая, цитидиловая или уридиловая кислоты или сокращенно АМФ, ГМФ, ЦМФ, УМФ, где буквы МФ обозначает монофосфат.
С этой концевой фосфорильной группой нуклеотидов могут связываться дополнительно одна-две фосфорильные группы по типу связи, которая имеется в пирофосфорной кислоте (пирофосфатная связь). В этих случаях образуются нуклеозиддифосфаты АДФ, ГДФ, ЦДФ и УДФ, а также нуклеозидтрифосфаты АТФ, ГТФ, ЦТФ и УТФ (табл. 2).
Таким образом, обозначив нуклеозид символом N (который означает А, Г, Ц или У) и связав его с 5′-гидроксильной группой, получим Нуклеозид — трифосфат (НТФ).Все НТФ являются настоящими супер — янусоподобными типами молекул, трижды двуликими. Три атома кислорода, связанные с фосфорильными группами (а, р, у), по отдельности представляют собой определенные пары групп, способных к переносу. Это свойство делает НТФ чувствительными, по крайней мере теоретически, к воздействию шести видов нуклеофильных атак, которые можно обозначить следующим образом: ар, ал, РР, Р<ь "ур, та, где а, р, у — связи, подвергающиеся атаке, а индексы р и й — проксимальный и дистальный концы (по отношению к ы):на самом деле все эти реакции происходят крайне неравномерно. за исключением редких атак ар и ра, все биосинтетические атаки на нтф происходят в положениях рр и уй. до сих пор неизвестны случаи атак см или 7р. Большинство биосинтетических процессов можно классифицировать как регулярно действующие двух - и трехступенчатые механизмы, зависящие от одного из указанных выше типов атак. Как и следует ожидать в этой весьма сложной области, основная тема иногда сопровождается вариациями. Но для знатоков, которыми мы можем считать всех туристов, которые до сих пор не покинули нас, решение этой проблемы не составляет труда. Один нети пичный, на первый взгляд, случай происходит, когда НТФ действует по типу Януса, в качестве донора группы в процессе конечной сборки. Однако нам только кажется, что этот одноступенчатый механизм не подчиняется правилу двух этапов. Группа, которая жертвуется НТФ, подвергается предварительной активации — со стороны ли группы, которая переносится от какой-либо другой молекулы НТФ, или благодаря работе окфос-блока, или в ре-зультате и того и другого — перед тем, как осуществляется ее экзергонический перенос. В таких случаях этап активации совпадает с фазой восстановления обычного двух - или трехступенчатого механизма (см. с. 146—149). Групповые потенциалы, участвующие в различных видах атаки на НТФ, различаются между собой. Как уже упоминалось, «физиологическая» свободная энергия гидролиза связи у в АТФ равна примерно — 14 ккал/г-моль. Все концевые фосфорильные группы в НТФ и в НДФ имеют одинаковый групповой потенциал. В отличие от них «физиологическая» свободная энергия гидролиза связи р в НТФ значительно выше, частично из-за различия стандартной свободной энергии гидролиза (около 3 ккал/г-моль) и, что важнее, из-за того, что большинство клеток содер-жат высокоактивные пирофосфатазы, гид - ролизующие неорганический фосфат по мере его образования. Поэтому гидролиз Р-связи сопровождается гидролизом образующегося пирофосфата: НТФ + Н20 - НМФ + ФФн ДОгидр. (р.связы ФФн + Н20—2Фн ДОГИДР (ФФН) НТФ + 2Н20 — НМФ + 2Фн ДОг„др. (общий) Такой же конечный результат может быть достигнут при гидролизе сначала у-, а затем р-связей; в каждом из этих случаев «физиологические» свободные энергии реакций известны: НТФ + Н20 — НДФ + Фн —14 ккал/г-моль НДФ + Н20 — НМФ Фн —14 ккал/г-моль НТФ + 2Н20 — НМФ +2Фн —28 ккал/г-моль Независимо от того, начнется процесс с р - или с у-связи, изменение общей свободной энергии при гидролизе обеих связей должно быть одинаковым. Поэтому, согласно элементарным правилам подсчета.«Физиологическая» свободная энергия гидролиза р-связи НТФ зависит от величины АОридр. (ффн), т. е. от того, насколько близко к состоянию равновесия действие пирофосфата изменяет концентрацию ФФн и Фн. Определить это точно невозможно. Но вполне допустимо, с точки зрения высокой активности ферментов, что достигается состояние, очень близкое равновесию, иными словами, что АСг„др, <ффн) = 0. в соответствии со сказанным мы примем для «физиологической» свободной энергии гидролиза р-связи максимальную величину, равную —28 ккал/г-моль. любопытно отметить, что у некоторых микроорганизмов не образуются очень низкие концентрации пирофосфата; они функционируют за счет экономии пирофосфата. по-видимому, расход лишней энегии, получаемой в результате реакций, протекающих по в-механизму благодаря действию пирофосфатаз, не является жизненной необходимостью. Что касается а-связи, то ее «физиологическая» свободная энергия гидролиза имеет величину около —7 ккал/г-моль НМФ. В силу указанной выше причины (гидролиз ФФн) она приближается к вели-чине — 21 ккал/г-моль НДФ и — 35 ккал/г-моль НТФ (распространяя рассуждения до ФФФн). В табл. 3 суммированы величины групповых потенциалов, которыми мы будем пользоваться в наших дальнейших рассуждениях. Необходимо помнить, что эти величины подвержены довольно значительным изменениям, зависящим от условий, которые преобладают в клетке. Но они все же могут помочь нам лучше понять основные энергетические характеристики биосинтетических механизмов. Когда связь НТФ разрывается для совершения биосинтеза, ее необходимо восстановить. В случае у-связи в АТФ восстановлением занимается окфос-блок. В любом другом случае связь НТФ восстанавливается за счет одной или нескольких у-связей АТФ благодаря действию транс - фосфорилирующих ферментов, которые катализируют следующие реакции: АТФ + Н — АДФ + НМФ. АТФ + НМФ АДФ + НДФ. АТФ + НДФ АДФ + НТФ. Первая реакция необратима из-за существенных различий в «физиологической»свободной энергии гидролиза между у-связью АТФ и а-связью НМФ. В двух других реакциях происходит обмен связей с одинаковым энергетическим уровнем и они легко обратимы. Вот почему стоимость такого рода переносов определяется действием окфос-блоков, которые оплачивают счета по затрате энергии. Следует, однако, заметить, что этот счет покрывает только часть биосинтетических процессов — зачастую существенную, а иногда даже единственную, — которая зависит от переносов групп. Могут также происходить и другие процессы, особенно электронный перенос от высокоэнергетических доноров. Биосинтетические восстановительные процессы играют особо важную роль среди аутотрофных организмов (см. гл. 10). Объединяя различные восстановительные реакции, мы закончим этот раздел сводной диаграммой, на которую в дальнейшем будем ссылаться как на центральный восстановительный механизм. Этот механизм способствует также активации таких строительных блоков, как, например, Фн или НМФ, которыми жертвуют в одноступенчатых биосинтетических процессах. Заметим, что ФФн не может быть включен в НТФ сам по себе, а должен быть сначала гидролизован (то же происходит и с ФФФн, не указанным в диаграмме из-за того, что его появление в свободной форме, если вообще он встречается, крайне редкое и мимолетное явление). н2о