Митохондрии: дыхание и аэробное восстановление энергии

0
460

Для нас, как и для большинства живых организмов, воздух настолько жизненно необходим, что мы не можем себе представить жизни без него. И тем не менее, как уже отмечалось , жизнь зародилась и длительное время существовала в мире, лишенном кислорода. Только после возникновения механизма фотосинтеза, известного специалистам как фотосистема II (а произошло это, вероятно, около 3 миллиардов лет назад, кислород начал поступать в атмосферу в значительных количествах, и его концентрация медленно поднималась до современного уровня, составляющего 20%.
Этот феномен представлял собой угрозу для жизни и послужил причиной исчезновения многих видов организмов, сходных с современными облигатными анаэробными организмами. Дело в том, что молекулярный кислород способен взаимодействовать различными способами с восстанавливающимися биологическими молекулами; в результате образуются такие высокотоксичные продукты, как супероксидный ион СЬ» и перекись водорода Н2О2. У выживших в этих условиях организмов, кроме тех, что нашли убежище в свободной от кислорода нише, развились защитные ферменты, в частности супероксиддисмутаза и каталаза. А некоторые со временем преуспели настолько, что «приручили» кислород и превратили его в самого верного союзника жизни — этого им удалось достигнуть благодаря приспособлению АТФ-генерирующих окфосблоков к использованию кислорода в качестве конечного акцептора электронов. И теперь их многочисленные потомки заполняют большую часть живого мира.Судя по известным анаэробным бактериям, адаптация к кислороду, повидимому, происходила постепенно. В конечном счете этот процесс увенчался одним из величайших достижений Природы — созданием фосфорилирующей дыхательной цепочки: рядом, который состоит из 15 с лишним электронных носителей. Разность потенциалов между НАДФ и кислородом составляет в целом 1, 070 мВ. Цепочка построена таким образом, что включает до трех последовательных окфос-блоков в ряду. Такого рода систему можно обнаружить в плазматической мембране некоторых современных бактерий, которые, как предполагают, унаследовали ее от древнейших предков, впервые приобретших плазматическую мембрану около миллиарда лет назад. По существу такая же система имеется и на внутренней стороне двух мембран, окружающих митохондрии, — это отдельные, покрытые оболочкой тельца размерами с бактерии, во множестве разбросанные по всей цитоплазме подавляющего большинства эукариотов растительного и животного происхождения; в этих клетках митохондрии выполняют роль главных центров дыхания и восстановления окислительной энергии. Связь между бактериальными и митохондриальными системами (если допустить, что таковая существует, а это вполне вероятно) представляет собой захватывающую гипотезу.
В наиболее популярной версии этой истории «героем» выступает примитивный фагоцит — гипотетическая гигантская прожорливая, как бактерия, клетка, которая считается промежуточной формой между прокариотами и эукариотами. Среди ее ежедневной добычи, во всяком случае так гласит упоминаемая версия, имелись некоторые аэробные бактерии, которые не были захвачены и уничтожены с целью получения пищи. Но эти бактерии в свою очередь пощадили своего захватчика в отличие от многих уцелевших патогенных бактерий. Более того, они установили с ним постоянное, выгодное для обеих сторон симбиотическое сотрудничество. Их потомки дожили до наших дней в виде митохондрий эукариотов. Полностью слившись с клеткой-хозяином, что вполне естественно и должно было произойти более чем за миллиард лет совместной жизни, эти органеллы тем не менее сохранили остатки генетической системы типичного бактериального вида наряду с некоторыми другими рудиментарными свойствами, присущими их предкам. Как мы увидим в следующей главе, хлоропласты растительной клетки скорее всего также произошли из симбиотически приспособленных фотосинтетических бактерий.
Эта теория, известная под названием эндосимбионтной гипотезы, имеет немало доказательств в свою пользу, в том числе некоторые филогенетические древа, созданные на основе молекулярных последовательностей. Однако ученые ничего не берут на веру, особенно когда дело касается восстановления событий далекого прошлого. По мнению некоторых исследователей, митохондрии с таким же успехом могли произойти из внутренних складок плазма-тической мембраны увеличивающейся аэробной бактерии, подобно тому как образовался вакуом (гл. 6), но с другим типом дифференцировки, который привел к разделению фосфорилирующей дыхательной цепи на отдельные везикулы. Можно предположить и ряд других вариантов, в том числе независимое происхождение бактериальных и митохондриальных систем путем конвергентной эволюции.
Скромному гиду не следует брать на себя смелость предлагать аргументы, которые до сих пор вызывают спор среди знатоков. Однако для тех, кто питает романтическую склонность к эндосимбионт-ной гипотезе, не могу не упомянуть о некоторых чертах митохондрий (и хлоропластов), которые свидетельствуют в пользу их происхождения из бактериальных эндосимбионтов.