Одноступенчатый процесс

0
323

В этих реакциях некоторая часть НТФ переносится к конечному биосинтетическому акцептору. Переносимая группа берется от предшественника, обычно от Фн или НМФ; на нашей сводной двухступенчатой диаграмме он обозначен как строительный блок X—О-, предварительно активированный или включенный в НТФ с помощью центрального восстановительного механизма. Жертвуемая молекула НТФ обладает свойствами посредника —двуликого Януса.
Реакции, зависящие от переноса уа. НТФ, вовлеченный в эти реакции, почти всегда представлен молекулой АТФ и действует как НДФ-носитель, переносящий фосфорильную группу.Большая часть фосфора, содержащегося в природных веществах (это разнообразные группы, которые включают нуклеозидфосфаты, несколько коферментов, нуклеиновые кислоты, фосфолипиды и многочисленные метаболиты),, первым вступает в комбинации по такому типу реакции. Исключение составляют концевая фосфорильная группа самой молекулы АТФ, которая включается благодаря действию окфос-блока, и те случаи, когда неорганический фосфат атакует предсуществую — щую связь (фосфоролиз).
«Стоимость» биосинтетического преоб-разования уже установлена:
АОбиосинт — 14 ДОгндр (V —ф) .
Обычные фосфатные эфиры, в том числе и НМФ, имеют «физиологические» групповые потенциалы от —6 до —8 ккал/г-моль. Таким образом, потеря свободной энергии, связанная с их образованием, колеблется между 8 и 6 ккал/г-моль, что делает реакцию практически необратимой. Однако ряд других фосфатных компонентов имеют «физиологические» групповые потенциалы около —14 ккал/г-моль, что делает транс — фосфорилирование с участием АТФ легко обратимым (ДО ~ 0). Среди них — все НТФ и НДФ, которые, как мы уже видели, могут свободно подвергаться трансфосфорилированию с участием АТФ. Благодаря этим реакциям любые НМФ или НДФ, которые образуются, немедленно реактивируются в НТФ и готовы к участию в новом биосинтетическом процессе (см. выше). И напротив, в случае острой потребности АТФ, например в начале работы мышц, клетки могут обратиться за помощью к собственным молекулам НТФ и НДФ (в том числе, и к АТФ) для восстановления затраченных молекул АТФ путем обратимых реакций трансфосфорилирования. Но главная ответственность падает на другую группу высокоэнергетических соединений, называемых фосфогенами, для которых характерно наличие амидофосфатной связи. Фосфогеном позвоночных служит креатинфосфат, образующийся из креатина по уа типу реакций переноса фосфорильной группы от АТФ:
АТФ + Креатин « АДФ + Креатин ~ Ф.
Равновесие этой реакции благоприятствует образованию АТФ. Только при достаточно высоком соотношении концентраций АТФ и АДФ, что, например.наблюдается в клетках, не подверженных энергетическому стрессу, происходит сдвиг реакции слева направо: запас креатин — фосфата восстанавливается. Как только начинается потребление АТФ и уровень АДФ поднимается, направление реакции изменяется справа налево и креатинфосфат служит для восстановления АТФ из АДФ. Это позволяет клетке продержаться до того времени, пока окфос-блок’ не заработает в полную силу.
Ферменты, катализирующие уа-реакции трансфосфорилирования из АТФ, называются фосфокиназами или просто киназами . Помимо участия во многих биосинтетических процессах и в кругообороте энергии фосфокиназы также выполняют важную роль в качестве инициаторов катаболических реакций. Именно в этих реакциях установили их существование, после чего было обнаружено, что перед поступлением в гликолизную цепь глюкоза должна быть активирована «гексокиназой» (см. гл. 7).
Имеется также особая группа фосфокиназ, действующих на белки. Они управляют рядом регуляторных процессов, включая ответственные за деление клеток, и поэтому могут быть вовлечены в процесс беспорядочного размножения раковых клеток.
Реакции, зависящие от Ра-переноса. НТФ, принимающий участие в этом редком типе реакций, выступает как НМФ-носитель, несущий пирофосфорильную группу (предварительно отделенную от Фн и активированную с помощью центрального восстановительного механизма):К числу важнейших акцепторов фос — форильной группы относится тиамин, или витамин В1 — первый среди всех обнаруженных витаминов. Тиаминпирофосфат (ТПФ) является очень важным коферментом в реакциях декарбоксилирования. Чтобы отделить от Фн пирофосфорильную группу, требуется 28 ккал. Часть этой энергии запасается в ТПФ и высвобождается только после гидролиза группы ФФ. Однако между свободной энергией гидролиза пирофосфатной связи, связывающей ФФ с АМФ в АТФ, и энергией присоединения эфира к тиамину в ТПФ имеется существенная разница. Она составляет от —8 до —10 ккал/г-моль. Этого вполне достаточно, чтобы сделать транспирофосфорилирование полностью необратимым.
Реакции, зависящие от рр-переноса. НТФ здесь представлен активированной группой НМФ, связанной с пирофосфат — ным носителем, как показано в верхней части приводимой ниже схемы. Энергетический вклад пирофосфатазы делается на начальной стадии реакции переноса, поэтому для формирования связи НМФ—У имеется около 28 ккал/г-моль.
Большинство процессов, при которых происходит включение нуклеотидильных групп в стабильные продукты биосинтеза, протекают по типу рр транснуклеотидилирования. К ним относятся фундаментальные процессы образования РНК и ДНК, а также реакции, протекающие в процессе синтеза НАД и других коферментов, таких, как НАДФ, ФАД, и кофермента А (см. с. 158—159); все они также содержат АМФ. Аденилирование играет важную роль в регуляции некоторых ферментных белков.
В отдельных самоатакующих вариациях реакций Рр-переноса атакующим веществом является внутренняя З’-гидроксильная группа самой переносимой нуклеотидильной группы. Важнейшая реакция такого рода, катализируемая аденилатциклазой, приводит к образованию 3′ 5′-циклического АМФ (цАМФ), важного внутриклеточного медиатора действия гормонов:Реакции этого класса подчиняются основным правилам последовательного переноса групп. Они либо катализируются одним ферментом лигазного типа и затем проходят путь посредника Януса, связанного с ферментом, либо переносятся с по-мощью двул различных ферментов, нередко физически отделенных друг от друга. Янус переносит группу X с места активации к месту сборки вместе с группой от активированного НТФ, выступающей в качестве носителя в комбинации с атомом кислорода, отобранным от строительного блока X—V-.
Реакции, зависящие от уд-переноса Они протекают с участием НТФ в качестве носителя группы X в составе посредни ка Януса:
В ряде таких реакций строительный блок X—О» представлен карбоновой кислотой и в роли двуликого посредника выступает соответствующий ацилфосфат:
Такие соединения обычно нестабильны. Кроме того, подобно многим ангидридам — веществам, образующимся при дегидрата — ционном конденсировании двух кислот, — они являются высокоэнергетическими, с групповыми потенциалами, имеющими величину, сравнимую с величиной потенциала у-связи пирофосфата (ангидрид фосфорной кислоты) в молекулах НТФ. Это препятствие можно устранить с помощью ферментов типа лигаз. В таких случаях АТФ выступает в роли стандартного поставщика энергии, а лигазы являются АДФ-образующими (не путать с АМФ-образующими лигазами, которые нам встретятся при рассмотрении реакций, снабжаемых энергией р-связи).
Конечными акцепторами активированной ацильной группы часто выступают аммиак (МН3) или первичные аминогруппы (К—Г^Ня). Образующаяся при этом амидная связь (—СО—ЫН—) имеет сравнительно низкую «физиологическую» свободную энергию гидролиза, от —6 до —8 ккал/г-моль. Таким образом, процесс в целом является достаточно экзергони — ческим, а потому и необратимым. Синтез аспарагина из аспарагиновои кислоты, а глутамина — из глутаминовой кислоты (см. гл. 2) и трипептида глутатиона из глутаминовой кислоты, цистеина и глицина — все это примеры двухступенчатого согласованного механизма, использующего энергию уа-связи. То же можно сказать и о синтезе производных карбамоила (К—СО—ЫНг), к которым относятся промежуточные продукты, образующиеся при синтезе аминокислоты аргинина, а также мочевины и пиримидиновых оснований. Но эта реакция представляет для нас интерес своей особенностью: активация и сборка катализируются двумя различными ферментами, связанными со свободно циркулирующим посредником Янусом, карба — моилфосфатом. Термодинамическая сложность, возникающая на пути такого механизма, преодолевается в ходе согласованного процесса, посредством которого карбамат — субстрат на стадии активации — образуется в виде связанного с ферментоу продукта конденсации бикарбоната с аммиаком. Этот процесс также катализируется посредством двухступенчатого уа-механизма. Таким образом, перед нами цепь двух последовательных уа-двухступенчатых механизмов. Первые три реакции катализируются одним трифункциональным фер-ментом — карбамоилфосфатсинтетазой, при участии двух нестабильных связанных ферментом посредников (они указаны внутри скобок в последовательности реакций в верхней части схемы): карбоксилфосфа — та, продукта Януса, получаемого в результате первой активации, и карбамата, продукта первой стадии сборки, который затем становится субстратом при вторичной активации. Вторая стадия сборки (пунктирные стрелки) катализируется отдельным ферментом.
На образование низкоэнергетической амидной связи карбамата и высокоэнергетической связи его ангидрида с фосфорной кислотой затрачиваются две у-связи, или 28 ккал/г-моль, что в сумме составляет 20—22 ккал/г-моль. Весь процесс в сильной степени экзергонический благодаря запасам энергии в связанном с ферментами карбамате. То же относится и к последующему переносу карбамоильной группы, к ее биосинтетическому акцептору, в результате которого она переводится с высокого уровня группового потенциала на низкий.
Иногда конечный продукт двухступенчатой уа-реакции, X—V, сам по себе является высокоэнергетическим соединением, например тиоэфир (характеризующийся связью —СО—5). В этом случае процесс легко обратим и может также способствовать образованию НТФ из соответствую-щего НДФ и Фн за счет расщепления связи X—У:
Реакции такого типа играют важную УДФ — О — роль в действии некоторых окфос-блоков на субстратном уровне, в которых тиоэфир — ная связь образуется за счет окислительного конденсирования Р1—5Н-тиола с аль — ™ дегидом (К—СН=0):
Добавив эти две реакции, получим полную картину окисления альдегида до соответствующей кислоты с сопряженным образованием НТФ. Этот процесс протекает в окфос-блоке гликолитической цепи (гл. 7):
В другом окфос-блоке на субстратном уровне окисляемым субстратом является а-кетокислота, которая в подобной окислительной комбинации с тиолом образует тиоэфир и побочный продукт декарбокси — лирования:
В этих реакциях К1—ЗН-тиол играет каталитическую роль в процессе сопряжения. Тиоэфир является промежуточным продуктом очень редкого типа. Он способен выполнять функции преобразователя электронсвязанной энергии и энергии, связанной с группами, и может образовываться за счет той или другой энергии
Реакции, зависящие от псевдо-ур-переноса. При синтезе гликогена, разветвленного древовидного полимера, состоящего из тысяч молекул глюкозы (см. гл. 2 и 7), активированные гликозильные единицы переносятся на концы растущих ветвей («рост с хвоста», см. с. 155) с УДФ в качестве носителя:
Этот пример может служить образцом синтеза углеводов, независимо от того, являются ли они дисахаридами, олигоса — харидными боковыми цепочками глико — протеинов и гликолипидов или полисахаридами. Всякий раз активированные молекулы Сахаров передаются акцептору с помощью НДФ, который, в зависимости от природы сахара, может быть представлен УДФ, АДФ, ГДФ или ЦДФ. Перенос осуществляется непосредственно до конечного биосинтетического акцептора, как при синтезе гликогена, или с помощью жиро-растворимого носителя долихилмоно — или дифосфата, как при некоторых реакциях гликозилирования, которые происходят в эндоплазматическом ретикулуме (гл. 6). НДФ-носители действуют как «рукоятки». Например, молекула глюкозы претерпевает ряд метаболических трансформаций в процессе прикрепления к УДФ.
Любопытно, что структура НДФ-саха — ров полностью соответствует структуре, которую можно ожидать для посредников, образующихся при ур-переносе (перенос НДФ) на свободную молекулу сахара:
НТФ + Сахар *- НДФ—Сахар + Фн.
Однако природа пошла не по этому
пути. На самом деле НДФ-сахара образуются за счет рр-переноса с участием гликозилфосфата в качестве акцептора. Сам гликозилфосфат образуется непосредственно или косвенно в результате у<)- трансфосфорилирования из атф, как показано в приводимой выше схеме. Обратите внимание на двойственный характер двуликого посредника Януса. В начальной стадии своего образования он имеет два лица — НМФ-ное и гликозил - фосфорильное. При реакциях сборки с ним происходит метаморфоза и он превращается в молекулу с НДФ-иловым и гликозиловым ликами. Из-за гидролиза ФФн каждая гликозильная часть (6—8 ккал/г-моль) «стоит» двух у-связей или 28 ккал/г-моль, что вдвое дороже по сравнению со стоимостью простого двухступенчатого ур-механизма. Почему природа не воспользовалась последним путем, остается только гадать. Быть может, не представлялось такой возможности, а быть может, такой путь имеет недостатки, которые мы не замечаем. Реакции, зависящие от Bd-переноса. В этих очень редких реакциях пирофосфат является носителем групп X в посреднике Янусе, как показано на схеме.Общее количество энергии, расходуемой на синтез X—V, 28 ккал/г-моль. Однако большая ее часть может оставаться в двуликом промежуточном продукте, поскольку это стадия сборки, которая выигрывает от низких концентраций ФФн, образующихся в результате действия пиро - фосфатазы. Эти процессы отличаются от Рр-механизма (см. ниже). Важнейший X—О - строительный блок Ра двухступенчатых реакций — 5-фосфорибоза, молекула, остающаяся при гидролизе пуринового или пиримидинового оснований и мононуклеотида. Перестройка некоторых мононуклеотидов может происходить согласно типичному Ра-двухступенчатому механизму с участием фосфорибозилпиро - фосфата (ФРПФ) в качестве посредника Януса. Например, гуанин может объеди-ниться с 5-фосфорибозой и образовать ГМФ, как показано выше. Такое «спасение» оснований — только одна из функций ФРПФ. Кроме того, он является промежуточным продуктом при синтезе аминокислот гистидина и триптофана, а также тех, которые имеют пури - новое кольцо. Другим ключевым промежуточным продуктом, имеющим структуру X—О—ФФ, является изопентенилпирофосфат — предшественник важных жирорастворимых молекул, в том числе хиноновых электронных переносчиков (см. гл. 9 и 10), а также витаминов А, Э, Е и К, стеролов и стероидов, каротиноидов, терпеноидов, латекса (резины), эфирных масел и многих других веществ из группы изопреновых: Это важное вещество образуется не в результате Ра-пирофосфатного переноса, а путем сложного механизма, включающего два уа-фосфорильных переноса. Иными словами, здесь мы сталкиваемся с псевдо - в-механизмом. В совокупности с подлинным механизмом он оказывает дополнительную энергетическую поддержку на стадии сборки благодаря действию пирофосфатазы и заслуживает того, чтобы мы его здесь рассмотрели. Как правило, две или больше 5-угле - родных единиц объединяются вместе с высбождением неорганического пирофосфата; этот процесс происходит при помощи повторяющегося механизма переноса, при котором конечный атом углерода изопен - тилпирофосфата является акцептором, а растущая цепь — переносимой группой (см. приводимую ниже схему реакций). Перед нами типичный пример «роста с головы» удлиняющейся цепочки. Синтез жирных кислот (см. с. 161) и белка происходит по-другому. Характерная черта данных механизмов заключается в том, что «двуглавый» продукт реакции активации сначала выступает в роли акцептора части цепочки, которая уже почти закончила свой рост, а затем выполняет функции группового донора. Если же рост происходит с хвоста, «двуглавый» промежуточный продукт сразу же отдает группу растущей цепочке.Этот процесс наблюдали при синтезе полисахаридов.Здесь мы рассматриваем, вероятно, наиболее широко распространенный биосинтетический механизм.Он происходит согласно следующей схеме с участием НМФ—О—X в качестве промежуточного продукта:Преимущество этого механизма заключается в том, что он полностью обладает силой р-связи (до 28 ккал/г-моль), т. е. энергией, необходимой для активации. Получающиеся в результате промежуточные вещества часто представляют собой нестабильные молекулярные соединения, которые остаются связанными с ферментами. Активация и сборка катализируются в отработанной последовательности с помощью единственного фермента. Эти лигазы используют АТФ в качестве энергетического донора, как это делают АДФ - образующие лигазы, которые катализируют подобные согласованные реакции, снабжаемые энергией от у-связи (см. с. 150). К важным ферментам этой группы принадлежит ДНК-лигаза — один из основных агентов, участвующих в синтезе ДНК - Ряд других биосинтетических процессов осуществляется с помощью АМФ-образую - щих лигаз. Для некоторых двухступенчатых процессов, зависящих от рр-переноса, требуется участие двух отдельных ферментов, связанных стабильным промежуточным продуктом, в котором активированная группа X переносится НМФ-ностелем. Напомним, что таким образом образуются НДФ-сахара, хотя при сборке они ведут себя несколько иначе. Более ортодоксальные промежуточные, продукты этого же класса образуются при рр-переносе между ЦТФ и различными фосфорилированными строительными блоками, используемыми при синтезе фосфолипидов, в том числе фосфатидных кислот, фосфорилхолина, фосфорилэтаноламина. Эти соединения имеют структуру ЦДФ—К и таким образом обозначаются (например, ЦДФ-холин). Однако в отличие от НДФ-сахаров они не выступают в роли К-доноров при последующей сборке, а продолжают вести себя как промежуточные продукты, внешне выглядящие как ЦМФ и К-фосфорил, как показано на схеме.