Энергетика митохондриального окисления

0
386
Энергетика митохондриального окисления

Полость, ограниченная плотной, внутренней митохондриальной мембраной, заполнена жидкостью, митохондриальным матриксом. Это богатый белками раствор, в основном состоящий из катаболических ферментов, вовлеченных в окислительное расщепление всех основных пищевых продуктов, в том числе аминокислот, которые состэвляют белки, жирных кислот, которые являются основными компонентами липидов, и пировиноградной кислоты, которая, как мы уже знаем, образуется в цитозоле в виде продукта аэробного гликолиза. Все эти пути объединяются в центральном метаболическом водовороте, известном как цикл Кребса. Свое название он получил в честь Ганса Кребса, англо-немецкого биохимика, обнаружившего это явление в конце 1930-х гг.
В этих превращениях участвует пестрая коллекция экзотических молекул; мы не будем пытаться их выявить, отметим только конечные продукты, которые являются очень простыми веществами: это вода, углекислый газ, аммиак или мочевина, неорганический сульфат, т. е. те или почти те вещества, которые образуются при сгорании в печи. Но здесь мы имеем дело с удивительно холодной печью, в которой вещество сгорает, а тепла образуется мало.
Этот парадокс, как вы, возможно, помните из гл. 7, объясняется просто: пищевые продукты не смешиваются с кислородом, они взаимодействуют с водой и в результате отдают атомы водорода или электроны соответствующим акцепторам. Такого рода превращения протекают при температуре клетки; при этом высвобождается небольшое количество энергии. В редких случаях, когда пищевые продукты производят довольно большое количество энергии, они направляются для участия в работе окфос — блоков на субстратном уровне, как, в частности, происходит при гликолизе.
Возьмем, к примеру, глюкозу. На каждую молекулу этого сахара, окисляемого в живой клетке, высвобождается в общей сложности 12 пар электронов:
С6Н|206 + 6Н20 >- 6С02 + 24е~ + 24Н+.
Две из этих пар образуются за счет окислительного гликолиза («ампутированная змея», см. гл. 7):
С6Н|206 ^ 2СН3—СО—СООН + 4е~ + 4Н+.
Другие десять получены при дальнейшем окислении в цикле Кребса из молекул пировиноградной кислоты, образующейся в результате гликолиза:
2СН3—СО—СООН + 6Н20 к
>- 6С02 + 20е~ + 20Н+.
При гликолизе, как мы уже убедились, электроны переносятся на НАД+ через окфос-блок субстратного уровня:
4е~ + 2Н+ + 2НАД+ + 2АДФ + 2Фн >-
>- 2НАДН + 2АТФ + 2Н20.
В цикле Кребса четыре из пяти пар электронов, высвобожденных в результате окисления одной молекулы пировиноградной кислоты, переносятся на НАД+, в одном случае через окфос-блок субстратного уровня. Пятая пара поступает к фла — виновому коферменту, ФАД (см. ниже) Таким образом, для двух молекул пировиноградной кислоты имеем:
20е» + 12Н+ + 8Н АД + + 2ФАД + 2АДФ + 2Фн ->- 8НАДН + 2ФАДН2 + 2АТФ + 2Н20.
Сложив оба процесса, получим:
24е~ + 14Н+ + 10НАД+ + 2ФАД +
+ 4АДФ + 4Фн >- 10НАДН +
+ 2ФАДН2 + 4АТФ + 4НгО.
что для анаэробного окисления глюкозы, которое обычно происходит в живой клетке с участием быстро вступающих в реакцию электронных акцепторов, дает:
СбН12Об + 2Н20 + 10НАД+ + 2ФАД +
+ 4АДФ + 4Фн 6С02 + 10НАДН +
+ 10Н+ + 2ФАДН2 + 4АТФ.
Аэробная часть этого процесса связана с переносом электронов от восстановленных коферментов к кислороду:
10НАДН + 10Н+ + 2ФАДН2 + 602 *
* 10НАД+ + 2ФАД + 12Н20.
Энергетические балансы анаэробных и аэробных частей легко вычислить. Как мы уже видели (гл. 7), «физиологическая» свободная энергия окисления (электронный потенциал) НАДН составляет —49 ккал на пару электрон-эквивалентов, переносимых на кислород. С учетом того, что «физиологический» электронный потенциал ФАДН2 составляет около —37 ккал .на пару электрон-эквивалентов, переносимых на кислород, для аэробной части сумма составит —:564 (10X49 + 2X37) ккал/г-моль окисленной глюкозы.
С другой стороны, согласно калориметрическим измерениям, «физиологическая» свободная энергия окисления глюкозы с кислородом в качестве электронного акцептора равна — 686 ккал/г-моль. В таком случае анаэробный баланс составляет при-мерно — 122 (686—564) ккал/г-моль, из которых 56 (4Х 14) ккал/г-моль получены в результате работы окфос-блока на субстратном уровне, а 66 расходуются на теплоту.
Другими словами (см. табл. 4), когда живая-клетка «сжигает» глюкозу с использованием собственных электронов вместо кислорода, то сохраняется более 90% свободной энергии, которая будет потеряна, если в процессе в роли акцептора участвует кислород. Большая часть этой энергии запасается в виде восстановленных коферментов и меньшая часть — в виде АТФ. По аналогии с гидродинамикой, которую мы про вели в конце гл. 7, это означает, что элект роны, высвобождаемые при биологическом окислении глюкозы, в первую очередь переносятся в энергетически богатые резервуары, расположенные намного выше уровня вода/кислород. В восьми из двенадцати случаев эти переносы осуществляются через небольшие различия в высоте, с малой потерей энергии. В остальных случаях различия в высоте значительные, но падение электронов используется в работе окфос-блоков субстратного уровня, производящих АТФ.
Жирные кислоты и аминокислоты в основном претерпевают такой же вид холодного сгорания, как пальмитиновая и глутаминовая кислоты (см. табл. 4). Их полное окисление сопровождается запасанием свыше 90% свободной энергии, полу-чаемой при сгорании, в энергетически богатых кофакторах.
Зная эти показатели, мы можем лучше понять положение наших древних анаэробных предков. Поскольку НАД, ФАД и другие электроннесущие коферменты находятся в клетке в каталитических количествах, преимущества холодного сгорания проявляют ся только в том случае, если для электронов, запасаемых в этих коферментах, имеется возможность оттока. При брожении проблема решается путем возврата элект-ронов в субстратный поток. При этом процесс протекает, но с очень низким энергетическим выходом. Так, анаэробный гликолиз, как мы убедились, дает только 47 ккал/г-моль использованной глюкозы, или менее 7% энергии, которая может быть получена при полном окислении. Он снабжает клетку только двумя молекулами АТФ, или 28 ккал готовой к использованию энергии.
Другой недостаток брожения заключается в том, что он налагает жесткие стехиометрические ограничения на метаболические пути. Субстрат . отдает ровно столько электронов, сколько поступит обратно в субстратный поток. Однако если электроны, запасаемые в коферментах, выгружаются на экзогенный акцептор, эти ограничения перестают существовать. В таких случаях любой вид окисляемого пищевого продукта можно полностью использовать. Это обеспечивает большую степень гибкости и зачастую лучший энергетический выход, по крайней мере с точки зрения клетки. Однако, с точки зрения мировых запасов энергии, крайне расточительно, если электроны будут выгружаться без возврата энергии.
Еще раз обратимся к примеру с глюкозой. Как мы имели возможность убедиться, фосфорилирование на субстратном уровне обеспечивает анаэробное брожение двумя молекулами АТФ или 28 ккал/г-моль использованной глюкозы. Из табл. 4 видно, что при полном окислении этот выход удваивается. Но какой дорогой ценой! В то время как при брожении высвобождается только 47 ккал из полученных 686, а оставшиеся возвращаются в окружающую среду в виде энергетически богатых молекул молочной кислоты или этанола, при свободном окислении все 686 ккал растрачиваются для ничтожно малого дополнительного выигрыша, составляющего 28 ккал/г-моль использованной глюкозы И если при изобилии с таким расточительством еще можно мириться, то при нехватке пищи оно становится преступным. И все же, возможно, некоторые примитивные аэробные организмы действовали именно таким путем, и у самых развитых эукариотов до сих пор происходят такие расточительные реакции .
Очевидно, единственный путь свести к минимуму непроизводительную затрату энергии окисления — использовать энергию, которая высвобождается при переносе электронов от восстановленных коферментов к конечному акцептору. Но это сопряжено с удачным расположением окфос — блоков на пути движения электронов. В ходе эволюции сформировалось немало приспособлений такого рода, которые «впряглись в одну упряжку» с определенными акцепторами электронов. Наилучшие результаты были достигнуты с кислородом, выступающим в роли конечного акцептора, особенно после того как фосфорилирующая дыхательная цепочка приобрела свою окончательную структуру — такую, которую мы сегодня обнаруживаем в митохондриях и некоторых аэробных бактериях. Клетки, оснащенные такими современными «спасателями» энергии, в состоянии производить до 38 молекул АТФ из одной — единственной молекулы глюкозы, восстанавливая около 80% всей свободной энергии, высвобождаемой в результате окислительного процесса в готовой к усвоению и использованию форме.